3,191 research outputs found

    Effective interaction between a colloid and a soft interface near criticality

    Full text link
    Within mean-field theory we determine the universal scaling function for the effective force acting on a single colloid located near the interface between two coexisting liquid phases of a binary liquid mixture close to its critical consolute point. This is the first study of critical Casimir forces emerging from the confinement of a fluctuating medium by at least one soft interface, instead by rigid walls only as studied previously. For this specific system, our semi-analytical calculation illustrates that knowledge of the colloid-induced, deformed shape of the interface allows one to accurately describe the effective interaction potential between the colloid and the interface. Moreover, our analysis demonstrates that the critical Casimir force involving a deformable interface is accurately described by a universal scaling function, the shape of which differs from that one for rigid walls.Comment: 19 pages, 11 figure

    Clinical indicators for success of misoprostol treatment after early pregnancy failure

    Get PDF
    Objective To identify clinical indicators for success of misoprostol treatment after early pregnancy failure. Methods A total of 473 women with early pregnancy failure received 800 μg of vaginal misoprostol on treatment day 1. At the follow-up visit on day 3, a second dose was given if expulsion was incomplete. On day 8, vacuum aspiration was offered if expulsion had not occurred. Ultrasonography was used as gold standard for success. A Classification and Regression Tree analysis was undertaken to derive two decision trees for the success of misoprostol treatment on study days 3 and 8. Results Heavy bleeding after the first dose and an open cervical os were identified as clinical indicators of treatment success on day 3. Treatment success occurred in 84% of women with either or both indicators. Reporting passage of tissue after a second misoprostol dose and old blood in the vagina were potential indicators of treatment success or failure on day 8. A woman with either of these indicators has a 65% chance of treatment success after the second dose. Conversely, a woman with neither indicator on day 8 has a 94% chance of treatment failure. Conclusion Standard clinical findings may be useful as indicators for success or failure of medical management of early pregnancy failure in settings with limited or no access to ultrasonography. More research to identify even better indicators is warranted

    Forests and water: a state-of-the-art review for Colorado

    Get PDF
    Includes bibliographical references (pages 65-75).Forests occupy 22.6 million acres in Colorado, or 32 percent of the land area, and nearly three-quarters of the forest lands in Colorado are in public ownership. About 55 percent of the forested area is considered suitable for forest harvest. National forests comprise nearly half of the forested area and approximately 60 percent of the area is considered suitable for forest harvest. There are no significant, privately-owned, industrial forest lands in Colorado. Historic photographs, forest stand records, and other data indicate that forest density in Colorado is generally greater than in the mid to late 1800s. This increase in forest density, attributed to suppression of forest fires, reduced grazing, and lower rates of forest harvest for timber, fuel, and other products, are generally believed to have decreased annual water yields. Annual water yields from the 1.34 million acres of national forest lands in the North Platte River basin are estimated to have decreased by approximately 8 to 14 percent or 135,000 to 185,000 acre-feet per year, depending on the assumed stand history for the spruce-fir forests. Hydrologic models indicate that average annual water yields could be increased in the North Platte River basin by about 55,000 acre-feet per year if all 502,000 acres designated as suitable for timber harvest were regularly harvested on a sustained yield basis. Similar data are not available for other river basins in Colorado, although the overall trends are probably similar. This research looked at how reducing forest canopy affects the rate of spring snowmelt and water yield, how it affects evapotranspiration, what happens when the forest regrows, whether reducing forest density affects water yields if annual precipitation is a factor, the effects on water quality, and the necessity for water storage facilities to store the increased runoff. The report does not attempt to address the myriad of other issues that must be considered when evaluating various management alternatives for forested lands. Some of these issues include the numerous laws and regulations that affect land management, economic considerations, the downstream uses of water and water storage capacities, and the effects of forest management on recreation, local communities, aesthetics, and other plant and animal species.Sponsored by: Colorado River Water Conservation District, Colorado Water Resources Research Institute, Denver Water, Northern Colorado Water Conservancy District and financed in part by the U.S. Department of the Interior, Geological Survey, through the Colorado Water Resources Research Institute and Grant no. 01HQGR0077

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Full text link
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870

    A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

    Full text link
    We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network's validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a νμ\nu_\mu charged current neutral pion data samples

    Ionization Electron Signal Processing in Single Phase LArTPCs I. Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation

    Full text link
    We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge with the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed.Comment: 60 pages, 36 figures. The second part of this work can be found at arXiv:1804.0258

    Maternal and neonatal outcomes by labor onset type and gestational age.

    Get PDF
    OBJECTIVE: We sought to determine maternal and neonatal outcomes by labor onset type and gestational age. STUDY DESIGN: We used electronic medical records data from 10 US institutions in the Consortium on Safe Labor on 115,528 deliveries from 2002 through 2008. Deliveries were divided by labor onset type (spontaneous, elective induction, indicated induction, unlabored cesarean). Neonatal and maternal outcomes were calculated by labor onset type and gestational age. RESULTS: Neonatal intensive care unit admissions and sepsis improved with each week of gestational age until 39 weeks (P \u3c .001). After adjusting for complications, elective induction of labor was associated with a lower risk of ventilator use (odds ratio [OR], 0.38; 95% confidence interval [CI], 0.28-0.53), sepsis (OR, 0.36; 95% CI, 0.26-0.49), and neonatal intensive care unit admissions (OR, 0.52; 95% CI, 0.48-0.57) compared to spontaneous labor. The relative risk of hysterectomy at term was 3.21 (95% CI, 1.08-9.54) with elective induction, 1.16 (95% CI, 0.24-5.58) with indicated induction, and 6.57 (95% CI, 1.78-24.30) with cesarean without labor compared to spontaneous labor. CONCLUSION: Some neonatal outcomes improved until 39 weeks. Babies born with elective induction are associated with better neonatal outcomes compared to spontaneous labor. Elective induction may be associated with an increased hysterectomy risk
    • …
    corecore